Transient Temperature Field Analysis of the Engagement Process for Marine Wet Multi-disc Clutches

JI Lichao, CHEN Jie, WANG Zifeng

Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 114-122.

PDF(6197 KB)
PDF(6197 KB)
Equipment Environmental Engineering ›› 2026, Vol. 23 ›› Issue (1) : 114-122. DOI: 10.7643/ issn.1672-9242.2026.01.013
Ships and Marine Engineering Equipment

Transient Temperature Field Analysis of the Engagement Process for Marine Wet Multi-disc Clutches

  • JI Lichao1, CHEN Jie2, WANG Zifeng3*
Author information +
History +

Abstract

The work aims to systematically investigate the evolution mechanism of the temperature field of friction pairs under transient conditions, addressing the unclear distribution law of the transient temperature field during the engagement process of a high-power marine wet multi-disc clutch. A dynamic model and a thermal analysis model for the engagement of the wet multi-disc clutch were established. Considering boundary conditions such as frictional contact and thermoelastic deformation, the thermo-structural coupling finite element method was adopted to investigate the distribution regularity of the temperature field for the friction pairs in the engagement process and the effect of different engagement speed on the transient temperature field. The temperature of the friction pairs gradually decreased from left to right along the axial direction during the en-gagement process, and the high-temperature region was concentrated on the friction surface between the second pair of dual steel plates and the friction plates. At the engagement speed of 360 r/min, the maximum temperature of the friction plates firstly increased and then decreased with time, reaching a peak of 329 ℃ at approximately 2 s. The dual steel plates exhibited a significant non-uniform temperature field during the engagement process, with high-temperature regions concentrated at the inner and outer diameter edges of the friction surface, and the maximum temperatures reached 203 ℃ and 214 ℃, respectively. In the engagement completion stage, the maximum temperature of the friction pairs increased significantly with the increase of the engagement speed, and the radial temperature of the friction surface also increased gradually. The thermo-structural coupling model established in this work can effectively represent the thermal behaviors of the friction pairs during the engagement stage, and it can provide a reference for the thermal reliability design of the clutch.

Key words

wet multi-disc clutch / friction pairs / thermo-structural coupling / engagement process / transient analysis / temperature field

Cite this article

Download Citations
JI Lichao, CHEN Jie, WANG Zifeng. Transient Temperature Field Analysis of the Engagement Process for Marine Wet Multi-disc Clutches[J]. Equipment Environmental Engineering. 2026, 23(1): 114-122 https://doi.org/10.7643/ issn.1672-9242.2026.01.013

References

[1] 罗倡.车辆湿式多片离合器摩擦副温度-压力分布特性研究[D].重庆: 重庆大学, 2016.
LUO C.Study on Temperature-Pressure Distribution Characteristics on Friction Pairs of Multi Disc Wet Clutch for Vehicle[D].Chongqing: Chongqing University, 2016.
[2] LI J Y, BARBER J R.Solution of Transient Thermoelastic Contact Problems by the Fast Speed Expansion Method[J].Wear, 2008, 265(3/4): 402-410.
[3] ZAGRODZKI P.Thermoelastic Instability in Friction Clutches and Brakes—Transient Modal Analysis Revealing Mechanisms of Excitation of Unstable Modes[J].International Journal of Solids and Structures, 2009, 46(11/12): 2463-2476.
[4] VOLDŘICH J.Frictionally Excited Thermoelastic Instability in Disc Brakes—Transient Problem in the Full Contact Regime[J].International Journal of Mechanical Sciences, 2007, 49(2): 129-137.
[5] AHN S H, JANG Y H.Frictionally Excited Thermo-Elastoplastic Instability[J].Tribology International, 2010, 43(4): 779-784.
[6] ZAGRODZKI P, LAM K B, AL BAHKALI E, et al.Nonlinear Transient Behavior of a Sliding System with Frictionally Excited Thermoelastic Instability[J].Journal of Tribology, 2001, 123(4): 699-708.
[7] HONG Y.Thermal Analysis of Frictional Disk in Speeding Wet Clutch[J].Chinese Journal of Mechanical Engineering (English Edition), 2004, 17(1): 102.
[8] 祁建德, 周然杰, 曲艳阳, 等.微型汽车离合器摩擦副温度场的有限元分析[J].机械研究与应用, 2009, 22(3): 38-40.
QI J D, ZHOU R J, QU Y Y, et al.Finite Element Analysis on the Temperature Field of the Friction Pair of Mini-Vehicle Clutch[J].Mechanical Research & Application, 2009, 22(3): 38-40.
[9] 林腾蛟, 李润方, 杨成云, 等.湿式摩擦离合器瞬态热传导过程数值仿真[J].机械科学与技术, 2003, 22(1): 39-41.
LIN T J, LI R F, YANG C Y, et al.Numerical Simulation of Transient Heat Transfer Process for Wet Friction Clutch[J].Mechanical Science and Technology for Aerospace Engineering, 2003, 22(1): 39-41.
[10] 曲艳阳, 黄继雄, 莫易敏, 等.基于有限元法的微车离合器温度场的研究[J].机械研究与应用, 2008, 21(5): 75-77.
QU Y Y, HUANG J X, MO Y M, et al.Research of Tempreture Field in Minibus Clutch Based on FEM[J].Mechanical Research & Application, 2008, 21(5): 75-77.
[11] ZAGRODZKI P, TRUNCONE S A.Generation of Hot Spots in a Wet Multidisk Clutch during Short-Term Engagement[J].Wear, 2003, 254(5/6): 474-491.
[12] ZHAO S M, HILMAS G E, DHARANI L R.Behavior of a Composite Multidisk Clutch Subjected to Mechanical and Frictionally Excited Thermal Load[J].Wear, 2008, 264(11/12): 1059-1068.
[13] ZHAO S M, HILMAS G E, DHARANI L R.Numerical Simulation of Wear in a C/C Composite Multidisk Clutch[J].Carbon, 2009, 47(9): 2219-2225.
[14] CZÉL B, VÁRADI K, ALBERS A, et al.Fe Thermal Analysis of a Ceramic Clutch[J].Tribology International, 2009, 42(5): 714-723.
[15] 苏楠阳, 吴学深, 杨星光, 等.湿式摩擦离合器摩擦副热特性分析[J].机械科学与技术, 2023, 42(9): 1567-1573.
SU N Y, WU X S, YANG X G, et al.Analysis of Thermal Characteristics of Friction Pair in Wet Friction Clutch[J].Mechanical Science and Technology for Aerospace Engineering, 2023, 42(9): 1567-1573.
[16] 张毅, 王其良, 张兴波, 等.湿式摩擦副接合过程热力学特性研究[J].润滑与密封, 2025, 50(4): 65-72.
ZHANG Y, WANG Q L, ZHANG X B, et al.Thermodynamic Characteristics of Wet Friction Pair Engagement Process[J].Lubrication Engineering, 2025, 50(4): 65-72.
[17] 胡宏伟, 王泽湘, 张志刚, 等.湿式离合器接合过程中瞬态温度场的仿真[J].中国科技论文, 2015, 10(4): 467-470.
HU H W, WANG Z X, ZHANG Z G, et al.Simulation of Transient Temperature Field of Wet Clutch Engagement[J].China Sciencepaper, 2015, 10(4): 467-470.
[18] JEN T C, NEMECEK D J.Thermal Analysis of a Wet-Disk Clutch Subjected to a Constant Energy Engagement[J].International Journal of Heat and Mass Transfer, 2008, 51(7/8): 1757-1769.
[19] 杨亚联, 张喀, 秦大同.湿式多片离合器热机耦合温度场及应力场分析[J].中国机械工程, 2014, 25(20): 2740-2744.
YANG Y L, ZHANG K, QIN D T.Research on Thermal Mechanical Coupling Temperature Field and Stress Field of Multiplate Wet Clutch Steel Disc[J].China Mechanical Engineering, 2014, 25(20): 2740-2744.
[20] XIANG X N, KREMER J M.A Simplified Close Form Approach, for Slipping Clutch Thermal Model[J].SAE Transactions, 2001, 110: 1231-1243.
[21] 贾云海, 张文明.湿式摩擦离合器摩擦片表面温升和油槽结构研究[J].中国公路学报, 2007, 20(5): 112-116.
JIA Y H, ZHANG W M.Research on Friction Disk Surface Oil Groove Configuration and Temperature Raise in Wet Friction Clutch[J].China Journal of Highway and Transport, 2007, 20(5): 112-116.
[22] 陈遥飞, 杨亚联, 秦大同.湿式多片离合器整体热传导过程分析[J].重庆工学院学报(自然科学版), 2009, 23(5): 11-14.
CHEN Y F, YANG Y L, QIN D T.Analysis on Overall Heat Transfer Process of Multi-Disk Wet Clutch[J].Journal of Chongqing Institute of Technology, 2009, 23(5): 11-14.
[23] 陈遥飞, 尤庆坤, 魏国, 等.湿式多片离合器散热性能研究[J].五邑大学学报(自然科学版), 2010, 24(2): 35-40.
CHEN Y F, YOU Q K, WEI G, et al.Research on Heat Dissipation of the Multi-Disk Wet Clutch[J].Journal of Wuyi University (Natural Science Edition), 2010, 24(2): 35-40.
[24] 崔红伟.液黏调速离合器摩擦副转矩特性研究[D].北京: 北京理工大学, 2014.
CUI H W.Research on the Torque Characteristic of Friction Pairs in Hydro-Viscous Clutch[D].Beijing: Beijing Institute of Technology, 2014.
[25] 王宏伟, 张心勤, 张金乐, 等.湿式离合器热负荷仿真研究[J].北京理工大学学报, 2013, 33(1): 47-51.
WANG H W, ZHANG X Q, ZHANG J L, et al.Simulation of Thermal Load of a Wet Clutch[J].Transactions of Beijing Institute of Technology, 2013, 33(1): 47-51.
[26] 郭永明, 王娜娜, 张彤.湿式离合器热固耦合仿真分析与试验研究[J].机械制造与自动化, 2020, 49(2): 150-154.
GUO Y M, WANG N N, ZHANG T.Analysis and Test on Thermal-Structure Coupling of Wet Clutch[J].Machine Building & Automation, 2020, 49(2): 150-154.
[27] 杨世铭, 陶文铨.传热学[M].4版.北京: 高等教育出版社, 2006: 53-57.
YANG S M, TAO W Q.Heat Transfer[M].4th ed.Beijing: Higher Education Press, 2006: 53-57.
[28] MANSOURI M, HOLGERSON M, KHONSARI M M, et al.Thermal and Dynamic Characterization of Wet Clutch Engagement with Provision for Drive Torque[J].Journal of Tribology, 2001, 123(2): 313-323.
[29] 孙冬野, 胡丰宾, 邓涛, 等.湿式多片离合器翘曲特性模拟与试验[J].重庆大学学报, 2010, 33(5): 1-6.
SUN D Y, HU F B, DENG T, et al.Simulation and Experiment for Warp Characteristic of Wet Multiple Disc Clutches[J].Journal of Chongqing University (Natural Science Edition), 2010, 33(5): 1-6.
[30] 何泽银, 吕和生, 林腾蛟, 等.湿式多片摩擦离合器接排过程热结构耦合分析[J].机械研究与应用, 2010, 23(5): 47-50.
HE Z Y, LYU H S, LIN T J, et al.Thermomechanical Coupled Analysis of Wet Multidisk Friction Clutch during Engagement[J].Mechanical Research & Application, 2010, 23(5): 47-50.
[31] 张家元, 宋志文, 李长庚, 等.基于有限元法的湿式离合器热结构耦合分析[J].机械制造, 2015, 53(5): 4-8.
ZHANG J Y, SONG Z W, LI C G, et al.FEM-Based Coupling Analysis of Wet Clutch Thermal Structure[J].Machinery, 2015, 53(5): 4-8.
[32] 张金乐, 马彪, 张英锋, 等.湿式换挡离合器温度场和应力场影响因素分析[J].北京理工大学学报, 2010, 30(6): 660-664.
ZHANG J L, MA B, ZHANG Y F, et al.Study on the Factors Affecting Temperature Field and Stress Field of the Wet Shift Clutch[J].Transactions of Beijing Institute of Technology, 2010, 30(6): 660-664.
PDF(6197 KB)

Accesses

Citation

Detail

Sections
Recommended

/